博客
关于我
利用pandas做数据分析统计应用---统计二胎年龄差距
阅读量:376 次
发布时间:2019-03-05

本文共 918 字,大约阅读时间需要 3 分钟。

源码和数据文件见上述链接。

本文数据提取自深圳市2019年某次公租房申请公示名单,移除了非身份证的数据。

import pandas as pdimport matplotlib.pyplot as plt '''粗略统计二胎年龄差距se 为1 主申请人,多数为爸爸se为2共同申请人,多为妈妈和孩子se为0,others'''#difage = []class family:	def __init__(self):		self.mainpyear= None		self.comPyear=[]		self.diff = []	def diff_age(self):		if len(self.comPyear)>2:			self.comPyear = sorted(self.comPyear, reverse = True)			#print(self.comPyear)			if( self.comPyear[0]-self.comPyear[1]<18):				self.diff.append( self.comPyear[0]-self.comPyear[1])		self.comPyear=[]if __name__ == '__main__':				b= pd.read_csv('a.csv', sep=',', dtype = {'id':str})	b['year']=pd.to_numeric(b['id'].str[6:10])	myf = family()	for key,row in b.iterrows():		if( row['se']==1):			myf.mainpyear = row['year']			myf.diff_age()		elif( row['se']==2):			myf.comPyear.append(row['year'])			#myf.diff_age()		#print(myf.diff)	a = pd.Series(myf.diff)	a.plot.hist(bins =19 )	plt.show()

 

结论:二胎年龄差距,2,3岁的家庭最多。

转载地址:http://tfpg.baihongyu.com/

你可能感兴趣的文章
Mysql中视图的使用以及常见运算符的使用示例和优先级
查看>>
Mysql中触发器的使用示例
查看>>
Mysql中设置只允许指定ip能连接访问(可视化工具的方式)
查看>>
mysql中还有窗口函数?这是什么东西?
查看>>
mysql中间件
查看>>
MYSQL中频繁的乱码问题终极解决
查看>>
MySQL为Null会导致5个问题,个个致命!
查看>>
MySQL为什么不建议使用delete删除数据?
查看>>
MySQL主从、环境搭建、主从配制
查看>>
Mysql主从不同步
查看>>
mysql主从同步及清除信息
查看>>
MySQL主从同步相关-主从多久的延迟?
查看>>
mysql主从同步配置方法和原理
查看>>
mysql主从复制 master和slave配置的参数大全
查看>>
MySQL主从复制几个重要的启动选项
查看>>
MySQL主从复制及排错
查看>>
mysql主从复制及故障修复
查看>>
MySQL主从复制的原理和实践操作
查看>>
webpack loader配置全流程详解
查看>>
mysql主从复制,读写分离,半同步复制实现
查看>>